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The numerical stability of thermo-lattice Boltzmann (TLBE) models is presented.
The TLBE algorithm is linearized and represented in matrix form. The spectral
radius of the resulting matrix is obtained by the method of powers. In particular, the
numerical stability of two 2-speed 13-bit TLBE models—one based on the hexagonal
lattice, and the other on a square lattice—is examined. For these two TLBE models,
as a function of the energy density, the achievable Reynolds number (before the onset
of grid modes) is more than an order of magnitude greater for the hexagonal grid
than for the square grid. 1998 Academic Press

1. INTRODUCTION

With the advent of massively parallel platforms, lattice gas (LGA) and lattice Boltzman
(LBE) methods [1-4] have surfaced as interesting contenders for the computational flt
dynamic simulations of complex flows. In attempts to overcome the early well-know
defects of LGA (e.g., lack of Galilean invariance in the fluid equations, pressure as
function of the mean velocity), LBE methods were constructed in which the collisiol
matrix was simplified to a simple BGK [5] collisional relaxation and the Boolean algebr:
was replaced by distribution functions. However, in drifting away from the LGA Boolear
detailed collisional microdynamics with its H-theorems and absolute stability [6], LBE is lef
without these moorings. Alternatively, LBE methods can be viewed in their own right as ¢
explicitfinite-difference Lagrangian technique [7] to solve nonlinear macroscopic problem

LBE methods to simulate nearly incompressible Navier—Stokes have been success
with detailed benchmarking for some two-dimensional (2D) flows [8]. The linearizec
Boltzmann equation with single-time BGK collisional relaxation termis solved on a discret
spatial lattice so chosen [2] that the discrete microscopic lattice symmetries do not taint 1
long wavelength, large time Chapman—Enskog limit of rotationally symmetric macroscop

79

0021-9991/98 $25.00
Copyright© 1998 by Academic Press
All rights of reproduction in any form reserved.



80 PAVLO ET AL.

dynamics. For 2D flows, the 9-bit square grid and the 7-bit hexagonal grid have the requir
symmetry and in the Chapman—Enskog limit are closed at the mass and momentum con
vation levels. Besides the near incompressibility issue, these early LBE models recove
the quadratically nonlinear Navier—Stokes momentum equation—but they also introduc
spurious cubic nonlinearities [9] because of the truncation level of the Taylor expansion f
the chosen relaxed distribution function in the BGK collision operator. These cubic nonlir
earities can be eliminated [10] from the momentum equation by going to higher order
the Taylor expansion and working with the 9-bit square grid.

Forays have also been made into thermo-lattice Boltzmann (TLBE) models [11-1
for compressible flows with macroscopic closure at the mass, momentum, and ene
conservation levels. At the simplest level for 2D flows, this requires a 13-bit model for eithe
the square [13] or hexagonal [11] grid. Moreover, we [14, 15] have found the hexagon
lattice model of Alexandeet al.[11] to be practically usable and computationally very
efficient within certain parameter windows while the square lattice models are plagus
by grid mode instabilities [7]. Now it has been claimed [10] that the spurious macroscop
nonquadratic nonlinearities in the momentum and energy equations can only be successt
removed on a square lattice, but not on a hexagonal grid.

Faced with this dichotomy, it is thus important to consider the numerical stability of bot
the hexagonal and square TLBE models—but to date very little attention has been paic
thisissue in TLBE. However, there has been some discussion of linear stability of the squ
and hexagonal grids in LBE. Benzi al.[16] have discussed linear stability for equilibrium
distribution functions with zero mean velocity, while Stirling and Chen [17] have examine
LBE linear stability with nonzero mean velocity. These need not be equivalent since o
only requires LBE to enforce Galilean invariance at the fluid level. With linearization o
the equilibrium distribution functions about zero mean velocity in LBE, instabilities are
wavenumber independent and are only dependent on the eigenvalues of the linearized c
sion operator [16]. On the other hand, the dynamics of the fluctuations about nonzero me
velocities the equilibria are much more prone to instabilities because of the effect of mod
mode coupling [16] between the various speeds needed in the LBE model. This mode—m
coupling can give rise to short-wavelength modes that drive the distribution functions ne
ative at some lattice nodes and numerical instability. These instabilities were examined
detail by Stirling and Chen [17]. Here we look at TLBE which includes closure at the energ
level. Hence we shall examine linear stability about zero mean velocity (since all LBE ar
TLBE studies involve only small mean velocities) but finite energy (of course, in LBE
energy never enters into the fluid equations). Thus, we will also be faced with mode—ma
induced short-wavelength instabilities, now driven by the nonzero energy. However, unli
Stirling and Chen [17], who perform a von Neumann linear stability analysis on LBE fo
particular wavenumbers, we perform a global quantitative linear stability of TLBE. Fron
this analysis, we determine optimal parameter regimes and estimate the achievable Reyn
number. For 2D flows, we compare the numerical stability of the hexagonal and square latt
TLBE models. It should be pointed out that our method can be readily applied to 3D flow

2. MACROSCOPIC LINEARIZATION OF TLBE

One first defines a set of base vectors to represent the allowed discrete velocities in
TLBE model

{ei}, i=1....by p=1...n, (1)
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The index i runs over those base vectors of spged |, while the index p runs over all
the allowed speeds. If rest particles are included) fhe Owith e = 0, and lp = 1. Thus
for the 2-speed 13-bit hexagonal TLBE model of Alexaneteal. [11], we have b = 6,
np = 2, as well as the rest particle. The total number of bits in a model is just

Np
ns=>» by 2)
p=0

The base vectors are so chosen that for all (but the boundary) spatial latticexppties
vectorx, + e, is also a spatial lattice node for all p and i.

Further, the particle distribution function is discretized in both space and velocity so th
Npi(Xk) is the number of particles at the nogle moving with the velocitye,;. In TLBE,
the dynamics of the system is governed by the linearized Boltzmann equation with sing
relaxation collision operator

1 e
Npi (X + € t+ 1) = Npi (i, ) = == [Npi(xie, 1) - Npi O, )] ©)

wherer is the relaxation time which governs how rapidly the distribution functigii{y) is
driven towards the equilibrium distribution functiorﬁﬁ(kk). In standard lattice Boltzmann
methods, the equilibrium distribution functiorﬁ?ﬂxk) is assumed to be a truncated Taylor
series in the mean flow with the coefficients satisfying certain isotropic constraints and
collisional invariants. In particular, one needs to force the BGK collision operator (the r.h.
of (3)) to conserve particle density momentunpu, and energy density.

DoNg=p Do Nplei=pu. Y NGl =206 + o1, @)
pi pi pi

A typical TLBE equilibrium distribution function [11-13] has the form
No' = p[Ap(e) + Bp(e)gyi - U + O(UP, £u..)], (5)
where the coefficients
Ap(e) = 8o+ 8p1e + ap2e?,  Bp(e) = bpo + bpie, (6)

and the particularg are dependent on the specific lattice chosen.

The LBE algorithm, (3), requires a very simple two-step process: (a) the free-streamil
of the distribution functions P from nodex, to the nodexy + €, which is just a shift
operation; and (b) BGK collisional relaxation at each node site. Thus all operations a
purely local and are wonderfully suited for parallelization on multinode computers.

We now proceed to the (macroscopic) linearization of TLBE in preparation for the stabilit
analysis. Since typical mean velocities in both LBE and TLBE simulations are small, it i
appropriate to consider the unperturbed macrostate<8) ateach node:

p(Xx) =po=1 ux)=0; &) = eo, (1)
so that the equilibrium distribution function

Noi(e = 0, u = 0) = AJ, (8)
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where
Ag = Ap(e0), for all x. 9)

Now apply an arbitrary perturbatic}? (x) to this equilibrium, so that
() attime t= 0 (notation?):
NS 04) = AS + &5 (xi) (10)

and
(I) attime t= 1 (notation®) after the free-streaming, but before the collisional relax-
ation step,

NG () = A + &5 (x — &) (11)

To determine the equilibrium distribution at the next time step, (5), we need to calculate t
new macroscopic variablgg?, pPu® pDe@

PP = Z Np () = 1+ Zé“”(xk
PP uu® (i) = Z eniNG (%) = Z & £5y (X — €

20® (xi0)e™ (x) = Z & NG ¥ () — p<1> (XU (%)

pi

=260 — pPOUP 012+ eV — e (12)
pi

on using (4)—(11). On Taylor-expanding the equilibrium distribution function around th
unperturbed macrostate (7),

NG? = p@ [AQ+ (6 — e0)A? + (& - WBY + -]
€2
_A/°+Z{A° (‘ o )A’°+<ep. &) BO}%“)(xk—equw (13)

on neglecting terms of @2). Here the derivative @ = A’(gg) and I£ = Bp(s0).

(Ill) At time t =1, after the collision relaxation: the distributiong;Nx) can be de-
termined from the equilibrium distribution (13) and the TLBE evolution equation (3). The
perturbed distribution at time=t 1,

& 0 = N () — A]
e
= Z %{Ag+ (? —& )A’°+ (€pi - eq)BO}
]

1
+ (1 - ;) ‘Spq‘sii] S (X — €q)), (14)

wheres; is the standard Kronecker symbol.
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It is convenient to relabel the lattice nodes by a single index kX% . ..., J, where
D
I=] . (15)
a=1

Herery is the number of nodes in tlah direction in D dimension space. We also rewrite the
set of all perturbation distribution functiof&; (xx)} into a vectorE of length Ix ns, where

ns is the total number of bits in the simulation, (2). Finally, we introduce an isomorphic
mapM of indices (p, i, k) into the single index m,

so that at time t
H(t) — E(t)(Xk), m=1..-M,where M= Jn.. 7)

With this indexing, we define an M M matrix C with elements

&
%{Ag-ﬁ- (E e )A’°+ (€pi - qu)BO} {1— %}%q‘sii](sk' (18)

and an Mx M matrix S with delta-function elements

Cmn =

Smn = Jpadijd (X — Xk — €g))- (19)
Here
n=M(@Q,j, 1. (20)

Thus the study of the linear stability of TLBE has been reduced to an eigenvalue proble
of the form

=D — csg®. (2 1)

TheC matrix is related to the collisional relaxation operation (with&fén (18) reflecting
its local character) and is block-diagonal. T®matrix represents the streaming operation;
it shifts &5 from nodexy — & to the nodex.

3. LINEAR STABILITY ANALYSIS

The first thing to note is the dimensionality of the matix S: for a 2D 13-bit TLBE
model on a 51 512 grid, the dimensionality is on the order of 346 x 3.4e+06. The
matrix C - Sis real but asymmetric, even for just one moving spégd> 1) if the rest
particles are included, as is required for TLBE under any chosen lattice.

Without appealing to the tremendous memory requirements for a matrix of this size, it
impossible to use the standard tools of eigenvalue analysis because of the accumulatio
numerical errors. In practice, the maximal (physical) size of a lattice system that is tractal
by standard procedures (e.g., as contained in the NAG library or IDL) turned out to be on
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a 4 x 4 grid for the 2-speed 13-bit TLBE model. However, we have found that the resul
obtained on such small lattice systems prove to be irrelevant (see Section 4).

However, the form of the matri - S allows for efficient algorithms in applying iterative
methods. First, we note that the matfixis composed of J identicakrx ns blocks. The
rest of the elements are zero, so only one block needs to be kept in memory. Moreoy
instead of using the full streaming matBwe can apply, between successive iterations, the
streaming rules to move the elements of the perturbation v&tortheir new positions.

In other words, we can fully utilize the LBE algorithm, with the collision operator (14)
replacing (3); the definitions (18)—(19) are given here for convenience.

From the stability point of view, we are only interested in the spectral ragdjusf
the matrixC - S, i.e. in the maximum absolute value of all its eigenval{igs}. For this
purpose we adopt the method of powers [18]. Suppose that tikeNMmatrix A has M
linearly independent eigenvectons, with corresponding eigenvalugs,, m = 1--- M.

An arbitrary vectow, can then be expressed as

M
Vo = Zamwm (22)
m=1
so that the nth iterated vectoy
M
m=1

LetA; be the dominant eigenvalug;| > |Am| forallm > 1. Providedvq is not orthogonal
tow; (so thate; # 0), it is known that

1
lim = Avo = aawy (24)
so that
Ay = fim Vet (25)
n—oo (Y- Vp)

for any vectory not orthogonal tav;. In practice, for the nth approximation of the leading
eigenvaluex(l”), one takes the quotient of the maximum components of two successi\
vectorsv, andvp, 1.

The convergence ta; in (25) is guaranteed only if a dominant (single or multiple)
real eigenvalue exists. It is easy to derive a similar expression for the case in whict
single complex pair of eigenvalues dominates. Strictly speaking, one would have to tre
individually all special cases (i.e., all possible combinations of real and complex eigenvalu
of the same (maximum) absolute values). However, this is just impossible considering t
number of eigenvalues involved. Instead of this, if (25) fails to converge, we take along-tin
geometric average

F(n—l)

max

1/
=)
" = [ ””“] : (26)
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FIG.1. Forenergy density, = 0.3, the evolution of the dominant eigenvalg as a function of the iteration
i for three different hexagonal lattices: 180100, 120 x 120, and 1606« 160. The dominant eigenvalue structure
changes with the size of the lattice. The dashed-dot curve is calculated from Eq. (25), the full line from tt
long-time average Eqg. (26). Foxi 1500, the amplitude of the oscillations for the 22@20 lattice are off-scale.

where
Fix = max{&y” () } 27)

with suitably chosen spdnin what follows, this valuéx | will be referred to as the spectral
radiusp;,.

A few cases are illustrated in Fig. 1. As a rule, (25) yields satisfactory convergenc
(dash-dotted lines), although the long-time average (26) may converge faster (full line
| = 400). Rarely, even (26) may fail. This occurs when dominant eigenvalues are compl
and have modulus very close to unity (dashed line). Hence, the method of powers m
be used with some supervision—although we did not encounter any of these difficulti
when a sufficiently large number of lattice nodes were employed in the TLBE simule
tion.

The relevance of the linear stability analysis to the full TLBE system is considered i
Fig. 2. The full line is the spectral radius as calculated by the above procedures for t
hexagonal grid [11], as described in the next section. For comparison, we have run a f
TLBE double shear code [15] based on the same modelwithD.5. N; in the Fig. 2 is the
timestep when, due to excitation of eigenmodes, some of the distributipfxg Noecome
negative (dashed-dotted line). Note that the eigenmodes grow exponentially with tirr
e”!, with the most unstable eigenmode having its growth yate N{l. In one timestep,
the mode amplitude has increased By ka the linear stability study, the spectral radius
0. = |A1] SO that

p. ~ exp| constx Nt . (28)

This is verified in the Fig. 2 (cf., the squares).
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FIG. 2. A plot of the spectral radiug, as a function of the energy densityatt = 0.5, as well as a plot
of the time iteration number {Nat which one of the distribution functions becomes negative for the hexagona
TLBE model [11].z = 0.5 corresponds to infinite ReynoldsR= co(v = 0), and numerical instability, > 1.
However, there are two regions in energy densitywhere locally some of the distribution functions become
negative after 4000 time stepsfNone window is around, ~ 0.33; a narrower window is aroung ~ 0.5.
Within these windows the spectral radips= 1+. The curve with the squares is a curve fit of the spectral radius
as a function of Nfor each energy density.

4. LINEAR STABILITY OF TLBE MODELS ON HEXAGONAL AND SQUARE GRID

In this section, we compare the linear stability between two 2D 13-bit TLBE models:

(I) the 2-speed hexagonal lattice model of Alexaneieal. [11] with the base vector
components

@ =0, & =6(Cosh,sing) withe,=p=12andp = % iZ 1.
(29)
() the 3-speed square model of Qian [13] with base vector components
& =0, ey =e(cosp,sing) withp=13;
i—1

e=1le=2 andﬂi=¥, i=1---4,

€ = €(COSH;, sing) withp=2e = 21/2, and

ﬂizw, i=1---4 (30)

i.e., in the Qian model there are eight bits along the Cartesian axes and four bits along
diagonals.

Note that these two models are accurate to the same level (fourth-rank tensor isotre
with the tensor composed from the base vectors) and are computationally equivalent (b
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13 bits). The only adjustable parameter in both these models is the initial internal ener
densityeq. The kinematic viscosity [11, 13] is related to the relaxation rate

- 2( _ ;) (31)

so that the corresponding Reynolds number

4u N,

Equations (31) and (32) are independent of the lattice geometry, and we shall dengte by
and Rk the Reynolds number for the hexagonal and square grids, respectively.

We first consider the dependence of the spectral raglias the number of lattice nodes
J, (15), at zero viscosity = 0, (31). In Fig. 3 we plop;, as a function ot for relaxation
parametet = 0.5, a parameter value that must be unstable since it corresponds to infini
Reynolds number, (32). The spectral radius for the hexagonal grid is shown in Fig. 3a wh
that for the square grid is shown in Fig. 3b. As mentioned earlier, one can fail to dete
numerical instabilities in the TLBE models if the number of lattice nodes J is too smal
i.e., for 3 =4 x 4 nodes one finds no instabilities with the spectral radjus: 1. Saturated
(asymptotic) values fap, , independent of the grid size, are found, provided the number o
lattice nodes are

() hexagonal model,,dx = 400 x 400;
() square mode,sd = 100x 100.

The saturation ob, has been verified for several valueggbn J= 840x 840 (hexagonal)
and 420x 420 (square) grids. These results are shown as squares in Fig. 3.

We now examine the minimum kinematic viscosities that can be tolerated in order
avoid exciting these grid mode instabilities. Figure 4 shewgo) for several values of

107 [ 15 ¢

: \\ E\ e 4205420 |
1.06 [ e | E —— 80x80 )
: \1 grid 40x40 1.4 Yot e 20x 20 /s

- 12x12

------- 60 x 60

13 ;

12 f

(&)
p(E0)

1.9

FIG. 3. The effects of lattice size on the spectral radiyés,) for (a) hexagonal and (b) square grid. The
spectral radiug; (go) becomes independent of the lattice size, provided (a) the hexagonal grid&iex 400
and (b) the square grid sizel00 x 100.
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FIG. 4. The dependence of the spectral radiués,) on the collisional relaxation rate for the hexagonal
and square lattice models. (a) For the hexagonal lattice, the dashed and dotted lines are derived from Eq. (35,
the full line for p, (z = 0.5). The squares and dots indicate the values found directly by the method of powers fc
the respective values efand a 420« 420 grid. (b) For the square (8080) grid, the spectral radii solid curves are
obtained directly by the method of powers, while the dotted lines are determined from Eq. (35), where applicat

the relaxation parameter. We find substantial stable regions (i.e., < 1) in the energy
densitye for

(1) hexagonal gridr =~ 0.505  (ll) square gridz ~ 0.6, (33)

clearly showing that grid modes are easier to suppress if one is using the hexagonal latt
The spectral radius is obviously related to the specific choice of the equilibrium distribi

tion functions (and possibly their departure from Maxwellians), but the discussion of suc

correlations is out of the scope of this paper. Here, we just note that WhenS&ny(Nthen

the TLBE simulation is linearly unstable for any finite This is the case for

(I) hexagonal gridgg < 0.25, (Il) square gridgg < 0.32 (34)

as can be seen in the spectral ragiyér) for ¢ = 0.32, Fig. 5. Within the least unstable
region, the dependence pf on t can be well approximated by

(1) = max{l, i (;) . [1— g(eo) - <1— thﬂ } . (35)

For anyeg, the coefficient ¢go) can be calculated wheg) is determined for two different
values ofr.

In Fig. 4a, the spectral radii curves for relaxation parameter 0.502 andr = 0.505
were calculated using (35) with(g) =2(1.05 — &p), while the dots and squares were
determined directly using the method of powers, (26). In Fig. 4b, all the spectral rac
curves were determined by the method of powers, (26). The dots represent those val
calculated from (35) with @o) = 1.9 &9 + 0.4 for &g > 0.333. The approximation (35)
breaks down foeg > 0.5 (see also Fig. 5).
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FIG. 5. The dependence of the spectral radifér) on the relaxation parameterfor selected values af,
for the square lattice. The dots are obtained from Eq. (35).

From (35) we can determing,i,, the minimum relaxation parameterfor which the
spectral radiug; = 1 and hence, from (32) the maximum Reynolds number achievable i
these TLBE models for a particular grid sizg # N and macroscopic velocity u. These
maximal Reynolds numbers for the hexagonalXBnd square (R are shown in Fig. 6
for u = 0.1. In the range where (35) is invalid,RRvas determined from,, obtained
directly using the method of powers. It is clear that the hexagonal lattice provides mu
better numerical stability at high Reynolds numbers than the square lattice for the two TLE
models examined here.

100N £
4 i
=4 L
10N hexagonal
- e
~.
L .
~.
.
N rectangular ~a
AN
\, =~
N\,
\

I \

r \

\

(18 B\ ' Y N M RN AW W WA A A \
0.2 0.3 0.4 0.5 0.6
&

FIG.6. The maximum achievable Reynolds number for the 13-bit 2D hexagonal (full line) and square (das
dot) TLBE lattice models [11, 13]. The lattice sizg & N. The dashed line indicates the region where Eq. (35)
starts to fail for the square (i.e., rectangular) grid. The hexagonal lattice provides much better numerical stabi
at high Reynolds numbers than the square lattice.
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It is possible that the maximal Reynolds number achievable due to the onset of grid |
stabilities may be somewhat lower due to nonlinear effects. In particular, the energy dens
¢ is not a constant in the full TLBE simulation and its variations must be kept within the
stability limits. The allowed stability window farwill be reduced as one increases the value
of the macroscopic velocity u. However, lowering u lowers the Reynolds number, (32).

From our analysis of other TLBE models, it seems that the numerical stability gets wor
as the number of speeds in the model are increased. This was seen in the stability patt
of a 2-speed 17-bit octagonal lattice compared to the 3-speed 13-bit square lattice. Th
results will be published elsewhere.

For the quasi-incompressible LBE models, which achieve closure at the momentt
level, one can formally apply the same linearization procedure as outlined in Section
The coefficients A and B in Eqg. (5) now become constants and the term containing t
derivative A vanishesg, in the definition of the coefficients A and B, can be retained as
a free numerical parameter (with no physical meaning since there is no energy equatiot
LBE models). With these coefficient restrictions, we have considered a 13-bit square LE
model similar to that discussed earlier and found that this LBE model is linearly stab
(spectral radiug; = 1) for r = 0.5 throughout the entire region in which the equilibrium
distribution functions are positive (i.e., in the range83< ¢ < 0.67). This is consistent
with the result [19] that, under the assumption of positive equilibrium distribution, an H
theorem can be proved for quasi-incompressible LBE.

5. CONCLUSIONS

We have considered the linear stability of TLBE using the method of powers and appli
our analysis to two 2-speed 13-bit TLBE models [11, 13]. With respect to the maxim:
achievable Reynolds number, the numerical stability of TLBE model based on the squ:
lattice [13] was an order of magnitude worse than that for the hexagonal lattice [11].

For strong turbulence modeling, the current TLBE modeling [11-13] may have to b
revised. One promising alternative has been suggested byai¢20] in which the spatial
and (microscopic) velocity grids are decoupled. This allows not only for nonuniform spati:
grid but a technique to increase the Reynolds number through interpolation techniqu
Some care must be taken to ensure that the interpolation techniques that reconnect
spatial and velocity grids does not introduce additional viscosity and, hence, a reduc
Reynolds number. Additional viscosity and reduced Reynolds number has been seen w
we attempted to suppress the grid instabilities by either smoothing the distributions
upgrading the time derivative in TLBE to second-order accuracy.

These TLBE models[11, 13]which utilize the single relaxation time scalar BGK collisior
operator, have an invariant value for the Prandtl numPer= w/«). To simulate flows
with a variable Prandtl number, one can generalize to a matrix collision operator who
eigenvalue properties allow a trivial matrix inversion as for the BGK scalar operator [21
We have performed TLBE simulations and seen the effects of a variable Prandtl number
the evolution of density, temperature, and vorticity contours, as well as numerical stabili
analysis. This will be reported elsewhere [22].
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