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The numerical stability of thermo-lattice Boltzmann (TLBE) models is presented.
The TLBE algorithm is linearized and represented in matrix form. The spectral
radius of the resulting matrix is obtained by the method of powers. In particular, the
numerical stability of two 2-speed 13-bit TLBE models—one based on the hexagonal
lattice, and the other on a square lattice—is examined. For these two TLBE models,
as a function of the energy density, the achievable Reynolds number (before the onset
of grid modes) is more than an order of magnitude greater for the hexagonal grid
than for the square grid. c© 1998 Academic Press

1. INTRODUCTION

With the advent of massively parallel platforms, lattice gas (LGA) and lattice Boltzmann
(LBE) methods [1–4] have surfaced as interesting contenders for the computational fluid
dynamic simulations of complex flows. In attempts to overcome the early well-known
defects of LGA (e.g., lack of Galilean invariance in the fluid equations, pressure as a
function of the mean velocity), LBE methods were constructed in which the collision
matrix was simplified to a simple BGK [5] collisional relaxation and the Boolean algebra
was replaced by distribution functions. However, in drifting away from the LGA Boolean
detailed collisional microdynamics with its H-theorems and absolute stability [6], LBE is left
without these moorings. Alternatively, LBE methods can be viewed in their own right as an
explicit finite-difference Lagrangian technique [7] to solve nonlinear macroscopic problems.

LBE methods to simulate nearly incompressible Navier–Stokes have been successful,
with detailed benchmarking for some two-dimensional (2D) flows [8]. The linearized
Boltzmann equation with single-time BGK collisional relaxation term is solved on a discrete
spatial lattice so chosen [2] that the discrete microscopic lattice symmetries do not taint the
long wavelength, large time Chapman–Enskog limit of rotationally symmetric macroscopic
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dynamics. For 2D flows, the 9-bit square grid and the 7-bit hexagonal grid have the required
symmetry and in the Chapman–Enskog limit are closed at the mass and momentum conser-
vation levels. Besides the near incompressibility issue, these early LBE models recovered
the quadratically nonlinear Navier–Stokes momentum equation—but they also introduced
spurious cubic nonlinearities [9] because of the truncation level of the Taylor expansion for
the chosen relaxed distribution function in the BGK collision operator. These cubic nonlin-
earities can be eliminated [10] from the momentum equation by going to higher order in
the Taylor expansion and working with the 9-bit square grid.

Forays have also been made into thermo-lattice Boltzmann (TLBE) models [11–13]
for compressible flows with macroscopic closure at the mass, momentum, and energy
conservation levels. At the simplest level for 2D flows, this requires a 13-bit model for either
the square [13] or hexagonal [11] grid. Moreover, we [14, 15] have found the hexagonal
lattice model of Alexanderet al. [11] to be practically usable and computationally very
efficient within certain parameter windows while the square lattice models are plagued
by grid mode instabilities [7]. Now it has been claimed [10] that the spurious macroscopic
nonquadratic nonlinearities in the momentum and energy equations can only be successfully
removed on a square lattice, but not on a hexagonal grid.

Faced with this dichotomy, it is thus important to consider the numerical stability of both
the hexagonal and square TLBE models—but to date very little attention has been paid to
this issue in TLBE. However, there has been some discussion of linear stability of the square
and hexagonal grids in LBE. Benziet al.[16] have discussed linear stability for equilibrium
distribution functions with zero mean velocity, while Stirling and Chen [17] have examined
LBE linear stability with nonzero mean velocity. These need not be equivalent since one
only requires LBE to enforce Galilean invariance at the fluid level. With linearization of
the equilibrium distribution functions about zero mean velocity in LBE, instabilities are
wavenumber independent and are only dependent on the eigenvalues of the linearized colli-
sion operator [16]. On the other hand, the dynamics of the fluctuations about nonzero mean
velocities the equilibria are much more prone to instabilities because of the effect of mode–
mode coupling [16] between the various speeds needed in the LBE model. This mode–mode
coupling can give rise to short-wavelength modes that drive the distribution functions neg-
ative at some lattice nodes and numerical instability. These instabilities were examined in
detail by Stirling and Chen [17]. Here we look at TLBE which includes closure at the energy
level. Hence we shall examine linear stability about zero mean velocity (since all LBE and
TLBE studies involve only small mean velocities) but finite energy (of course, in LBE,
energy never enters into the fluid equations). Thus, we will also be faced with mode–mode
induced short-wavelength instabilities, now driven by the nonzero energy. However, unlike
Stirling and Chen [17], who perform a von Neumann linear stability analysis on LBE for
particular wavenumbers, we perform a global quantitative linear stability of TLBE. From
this analysis, we determine optimal parameter regimes and estimate the achievable Reynolds
number. For 2D flows, we compare the numerical stability of the hexagonal and square lattice
TLBE models. It should be pointed out that our method can be readily applied to 3D flows.

2. MACROSCOPIC LINEARIZATION OF TLBE

One first defines a set of base vectors to represent the allowed discrete velocities in the
TLBE model

{epi} , i = 1 . . . , bp; p = 1. . . . np. (1)
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The index i runs over those base vectors of speed ep = |epi|, while the index p runs over all
the allowed speeds. If rest particles are included, then p = 0with e0 = 0, and b0 = 1. Thus
for the 2-speed 13-bit hexagonal TLBE model of Alexanderet al. [11], we have bp = 6,
np = 2, as well as the rest particle. The total number of bits in a model is just

ns =
np∑

p=0

bp. (2)

The base vectors are so chosen that for all (but the boundary) spatial lattice nodesxk , the
vectorxp + epi is also a spatial lattice node for all p and i.

Further, the particle distribution function is discretized in both space and velocity so that
Npi(xk) is the number of particles at the nodexk moving with the velocityepi. In TLBE,
the dynamics of the system is governed by the linearized Boltzmann equation with single
relaxation collision operator

Npi(xk + epi, t + 1) − Npi(xk, t) = −1

τ

[
Npi(xk, t) − Neq

pi (xk, t)
]
, (3)

whereτ is the relaxation time which governs how rapidly the distribution function Npi(xk) is
driven towards the equilibrium distribution function Neq

pi (xk). In standard lattice Boltzmann
methods, the equilibrium distribution function Neq

pi (xk) is assumed to be a truncated Taylor
series in the mean flowu with the coefficients satisfying certain isotropic constraints and
collisional invariants. In particular, one needs to force the BGK collision operator (the r.h.s.
of (3)) to conserve particle densityρ, momentumρu, and energy densityε:∑

pi

Neq
pi = ρ,

∑
pi

Neq
pi epi = ρu ,

∑
pi

Neq
pi e

2
p = 2ρε + ρu2. (4)

A typical TLBE equilibrium distribution function [11–13] has the form

Neq
pi = ρ[Ap(ε) + Bp(ε)epi · u + O(u2, εu..)], (5)

where the coefficients

Ap(ε) = ap0 + ap1ε + ap2ε
2, Bp(ε) = bp0 + bp1ε, (6)

and the particular ap0 are dependent on the specific lattice chosen.
The LBE algorithm, (3), requires a very simple two-step process: (a) the free-streaming

of the distribution functions Npi from nodexk to the nodexk + epi which is just a shift
operation; and (b) BGK collisional relaxation at each node site. Thus all operations are
purely local and are wonderfully suited for parallelization on multinode computers.

We now proceed to the (macroscopic) linearization of TLBE in preparation for the stability
analysis. Since typical mean velocities in both LBE and TLBE simulations are small, it is
appropriate to consider the unperturbed macrostate (at t = 0) ateach node:

ρ(xk) = ρ0 = 1; u(xk) = 0 ; ε(xk) = ε0, (7)

so that the equilibrium distribution function

Neq
pi (ε = ε0, u = 0) = A0

p, (8)
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where

A0
p ≡ Ap(ε0), for all xk . (9)

Now apply an arbitrary perturbationξ (0)
π i (xk) to this equilibrium, so that

(I) at time t= 0 (notation(0)):

N(0)
pi (xk) = A0

p + ξ
(0)
pi (xk) (10)

and
(II) at time t = 1 (notation(1,s)) after the free-streaming, but before the collisional relax-

ation step,

N(1,s)
pi (xk) = A0

p + ξ
(0)
pi (xk − epi). (11)

To determine the equilibrium distribution at the next time step, (5), we need to calculate the
new macroscopic variablesρ(1), ρ(1)u(1), ρ(1)ε(1),

ρ(1)(xk) =
∑

pi

N(1,s)
pi (xk) = 1 +

∑
pi

ξ
(0)
pi (xk − epi)

ρ(1)(xk)u(1)(xk) =
∑

pi

epiN
(1,s)
pi (xk) =

∑
pi

epi ξ
(0)
pi (xk − epi)

2ρ(1)(xk)ε
(1)(xk) =

∑
pi

e2
p N(1,s)

pi (xk) − ρ(1)(xk)u
2(xk)

= 2ε0 − ρ(1)(xk)[u
(1)(xk)]

2 +
∑

pi

e2
p ξ

(0)
pi (xk − epi) (12)

on using (4)–(11). On Taylor-expanding the equilibrium distribution function around the
unperturbed macrostate (7),

N(1,eq)
pi = ρ(1)

[
A0

p + (ε − ε0)A
′0
p + (epi · u)B0

p + · · · ]
= A′0

p +
∑

qj

{
A0

p +
(

e2
q

2
− ε0

)
A′0

p + (epi · eqj) B0
p

}
ξ

(0)
qj (xk − eqj) + · · · , (13)

on neglecting terms of O(ξ2). Here the derivative A′0p ≡ A′(ε0) and B0
p ≡ Bp(ε0).

(III) At time t = 1, after the collision relaxation: the distributions N(1)
pi (xk) can be de-

termined from the equilibrium distribution (13) and the TLBE evolution equation (3). The
perturbed distribution at time t= 1,

ξ
(1)
pi (xk) = N(1)

pi (xk) − A0
p

=
∑

qj

[
1

τ

{
A0

p +
(

e2
q

2
− ε0

)
A′0

p + (epi · eq)B
0
p

}

+
(

1 − 1

τ

)
δpqδij

]
ξ

(0)
qj (xk − eqj), (14)

whereδij is the standard Kronecker symbol.
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It is convenient to relabel the lattice nodes by a single index k : k= 1, . . . . , J, where

J =
D∏

α=1

nα. (15)

Here nα is the number of nodes in theαth direction in D dimension space. We also rewrite the
set of all perturbation distribution functions{ξpi(xk)} into a vector4 of length J×ns, where
ns is the total number of bits in the simulation, (2). Finally, we introduce an isomorphic
mapM of indices (p, i, k) into the single index m,

m = M(p, i, k) (16)

so that at time t

4(t)
m ≡ ξ

(t)
pi (xk), m = 1 · · · M, where M≡ Jns. (17)

With this indexing, we define an M× M matrix C with elements

cmn =
[

1

τ

{
A0

p +
(

e2
q

2
− ε0

)
A′0

p + (epi · eqj)B
0
p

}
+

{
1 − 1

τ

}
δpqδij

]
δkl (18)

and an M× M matrix S with delta-function elements

smn = δpqδijδ(xl − xk − eqj). (19)

Here

n = M(q, j, 1). (20)

Thus the study of the linear stability of TLBE has been reduced to an eigenvalue problem
of the form

4(t+1) = CS4(t). (21)

TheC matrix is related to the collisional relaxation operation (with theδkl in (18) reflecting
its local character) and is block-diagonal. TheSmatrix represents the streaming operation;
it shifts ξpi from nodexk − epi to the nodexk .

3. LINEAR STABILITY ANALYSIS

The first thing to note is the dimensionality of the matrixC · S: for a 2D 13-bit TLBE
model on a 512× 512 grid, the dimensionality is on the order of 3.4e+06× 3.4e+06. The
matrix C · S is real but asymmetric, even for just one moving speed(np ≥ 1) if the rest
particles are included, as is required for TLBE under any chosen lattice.

Without appealing to the tremendous memory requirements for a matrix of this size, it is
impossible to use the standard tools of eigenvalue analysis because of the accumulation of
numerical errors. In practice, the maximal (physical) size of a lattice system that is tractable
by standard procedures (e.g., as contained in the NAG library or IDL) turned out to be only
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a 4× 4 grid for the 2-speed 13-bit TLBE model. However, we have found that the results
obtained on such small lattice systems prove to be irrelevant (see Section 4).

However, the form of the matrixC ·Sallows for efficient algorithms in applying iterative
methods. First, we note that the matrixC is composed of J identical ns × ns blocks. The
rest of the elements are zero, so only one block needs to be kept in memory. Moreover,
instead of using the full streaming matrixSwe can apply, between successive iterations, the
streaming rules to move the elements of the perturbation vector4 to their new positions.
In other words, we can fully utilize the LBE algorithm, with the collision operator (14)
replacing (3); the definitions (18)–(19) are given here for convenience.

From the stability point of view, we are only interested in the spectral radiusρλ of
the matrixC · S, i.e. in the maximum absolute value of all its eigenvalues{λm}. For this
purpose we adopt the method of powers [18]. Suppose that the M× M matrix A has M
linearly independent eigenvectorswm with corresponding eigenvaluesλm, m = 1 · · · M.
An arbitrary vectorv0 can then be expressed as

v0 =
M∑

m=1

αmwm (22)

so that the nth iterated vectorvn

vn = Anv0 =
M∑

m=1

λn
mαmwm. (23)

Letλ1 be the dominant eigenvalue:|λ1| > |λm| for all m > 1. Providedv0 is not orthogonal
to w1 (so thatα1 6= 0), it is known that

lim
n→∞

1

λn
1

Anv0 = α1w1 (24)

so that

λ1 = lim
n→∞

(y · vn+1)

(y · vn)
(25)

for any vectory not orthogonal tow1. In practice, for the nth approximation of the leading
eigenvalueλ(n)

1 , one takes the quotient of the maximum components of two successive
vectorsvn andvn+1.

The convergence toλ1 in (25) is guaranteed only if a dominant (single or multiple)
real eigenvalue exists. It is easy to derive a similar expression for the case in which a
single complex pair of eigenvalues dominates. Strictly speaking, one would have to treat
individually all special cases (i.e., all possible combinations of real and complex eigenvalues
of the same (maximum) absolute values). However, this is just impossible considering the
number of eigenvalues involved. Instead of this, if (25) fails to converge, we take a long-time
geometric average

∣∣λ(n)
i

∣∣ =
[

F(n)
max

F(n−I)
max

]1/I

, (26)
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FIG. 1. For energy densityε0 = 0.3, the evolution of the dominant eigenvalueλ
(i)
1 as a function of the iteration

i for three different hexagonal lattices: 100× 100, 120× 120, and 160× 160. The dominant eigenvalue structure
changes with the size of the lattice. The dashed-dot curve is calculated from Eq. (25), the full line from the
long-time average Eq. (26). For i< 1500, the amplitude of the oscillations for the 120× 120 lattice are off-scale.

where

F(n)
max ≡ max

{
ξ

(n)
pi (xk)

}
(27)

with suitably chosen spanI . In what follows, this value|λ1| will be referred to as the spectral
radiusρλ.

A few cases are illustrated in Fig. 1. As a rule, (25) yields satisfactory convergence
(dash-dotted lines), although the long-time average (26) may converge faster (full lines,
I = 400). Rarely, even (26) may fail. This occurs when dominant eigenvalues are complex
and have modulus very close to unity (dashed line). Hence, the method of powers must
be used with some supervision—although we did not encounter any of these difficulties
when a sufficiently large number of lattice nodes were employed in the TLBE simula-
tion.

The relevance of the linear stability analysis to the full TLBE system is considered in
Fig. 2. The full line is the spectral radius as calculated by the above procedures for the
hexagonal grid [11], as described in the next section. For comparison, we have run a full
TLBE double shear code [15] based on the same model withτ = 0.5. Nf in the Fig. 2 is the
timestep when, due to excitation of eigenmodes, some of the distributions Npi(xk) become
negative (dashed-dotted line). Note that the eigenmodes grow exponentially with time,
eγ ·t, with the most unstable eigenmode having its growth rateγ ∝ N−1

f . In one timestep,
the mode amplitude has increased by eγ . In the linear stability study, the spectral radius
ρλ = |λ1| so that

ρλ ≈ exp
[

const× N−1
f

]
. (28)

This is verified in the Fig. 2 (cf., the squares).
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FIG. 2. A plot of the spectral radiusρλ as a function of the energy densityε0 at τ = 0.5, as well as a plot
of the time iteration number Nf, at which one of the distribution functions becomes negative for the hexagonal
TLBE model [11].τ = 0.5 corresponds to infinite Reynolds RH = ∞(ν = 0), and numerical instabilityρλ > 1.
However, there are two regions in energy densityε0, where locally some of the distribution functions become
negative after 4000 time steps (Nf): one window is aroundε0 ≈ 0.33; a narrower window is aroundε0 ≈ 0.5.
Within these windows the spectral radiusρλ = 1+. The curve with the squares is a curve fit of the spectral radius
as a function of Nf for each energy densityε0.

4. LINEAR STABILITY OF TLBE MODELS ON HEXAGONAL AND SQUARE GRID

In this section, we compare the linear stability between two 2D 13-bit TLBE models:

(I) the 2-speed hexagonal lattice model of Alexanderet al. [11] with the base vector
components

e0 = 0, epi = ep(cosβi, sinβi) with ep = p = 1, 2 andβi = (i − 1)π

3
, i = 1 · · · ε,

(29)
(II) the 3-speed square model of Qian [13] with base vector components

e0 = 0, epi = ep(cosβi, sinβi) with p = 1, 3;

e1 = 1, e3 = 2, andβi = (i − 1)π

2
, i = 1 · · · 4,

epi = ep(cosβi, sinβi) with p = 2; e2 = 21/2, and

βi = (i − 1/2)π

2
, i = 1 · · · 4; (30)

i.e., in the Qian model there are eight bits along the Cartesian axes and four bits along the
diagonals.

Note that these two models are accurate to the same level (fourth-rank tensor isotropy
with the tensor composed from the base vectors) and are computationally equivalent (both
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13 bits). The only adjustable parameter in both these models is the initial internal energy
densityε0. The kinematic viscosityν [11, 13] is related to the relaxation rateτ

ν = 3

2
ε

(
τ − 1

2

)
(31)

so that the corresponding Reynolds number

R = 4u

3ε

nα

(2τ − 1)
. (32)

Equations (31) and (32) are independent of the lattice geometry, and we shall denote by RH

and RR the Reynolds number for the hexagonal and square grids, respectively.
We first consider the dependence of the spectral radiusρλ on the number of lattice nodes

J, (15), at zero viscosityν = 0, (31). In Fig. 3 we plotρλ as a function ofε0 for relaxation
parameterτ = 0.5, a parameter value that must be unstable since it corresponds to infinite
Reynolds number, (32). The spectral radius for the hexagonal grid is shown in Fig. 3a while
that for the square grid is shown in Fig. 3b. As mentioned earlier, one can fail to detect
numerical instabilities in the TLBE models if the number of lattice nodes J is too small;
i.e., for J = 4× 4 nodes one finds no instabilities with the spectral radiusρλ = 1. Saturated
(asymptotic) values forρλ, independent of the grid size, are found, provided the number of
lattice nodes are

(I) hexagonal model, Jhex = 400× 400;
(II) square mode, Jsq = 100× 100.

The saturation ofρλ has been verified for several values ofε0 on J= 840×840 (hexagonal)
and 420× 420 (square) grids. These results are shown as squares in Fig. 3.

We now examine the minimum kinematic viscosities that can be tolerated in order to
avoid exciting these grid mode instabilities. Figure 4 showsρλ(ε0) for several values of

FIG. 3. The effects of lattice size on the spectral radiusρλ(ε0) for (a) hexagonal and (b) square grid. The
spectral radiusρλ(ε0) becomes independent of the lattice size, provided (a) the hexagonal grid size≥400× 400
and (b) the square grid size≥100× 100.
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FIG. 4. The dependence of the spectral radiusρλ(ε0) on the collisional relaxation rateτ for the hexagonal
and square lattice models. (a) For the hexagonal lattice, the dashed and dotted lines are derived from Eq. (35) and
the full line forρλ(τ = 0.5). The squares and dots indicate the values found directly by the method of powers for
the respective values ofτ and a 420×420 grid. (b) For the square (80×80) grid, the spectral radii solid curves are
obtained directly by the method of powers, while the dotted lines are determined from Eq. (35), where applicable.

the relaxation parameterτ . We find substantial stable regions (i.e.,ρλ ≤ 1) in the energy
densityε for

(I) hexagonal grid :τ ≈ 0.505, (II) square grid :τ ≈ 0.6, (33)

clearly showing that grid modes are easier to suppress if one is using the hexagonal lattice.
The spectral radius is obviously related to the specific choice of the equilibrium distribu-

tion functions (and possibly their departure from Maxwellians), but the discussion of such
correlations is out of the scope of this paper. Here, we just note that when any Neq

pi < 0 then
the TLBE simulation is linearly unstable for any finiteτ . This is the case for

(I) hexagonal grid :ε0 ≤ 0.25, (II) square grid :ε0 ≤ 0.32 (34)

as can be seen in the spectral radiusρλ(τ ) for ε0 = 0.32, Fig. 5. Within the least unstable
region, the dependence ofρλ on τ can be well approximated by

ρλ(τ ) = max

{
1, ρλ

(
1

2

)
·
[
1 − g(ε0) ·

(
1 − 1

2τ

)]}
. (35)

For anyε0, the coefficient g(ε0) can be calculated whenρλ is determined for two different
values ofτ .

In Fig. 4a, the spectral radii curves for relaxation parameterτ = 0.502 andτ = 0.505
were calculated using (35) with g(ε0) = 2(1.05 − ε0), while the dots and squares were
determined directly using the method of powers, (26). In Fig. 4b, all the spectral radii
curves were determined by the method of powers, (26). The dots represent those values
calculated from (35) with g(ε0) = 1.9 ε0 + 0.4 for ε0 > 0.333. The approximation (35)
breaks down forε0 > 0.5 (see also Fig. 5).



            
P1: NAL

January 8, 1998 8:22 APJ/Journal of Computational Physics JCP5864

LINEAR STABILITY ANALYSIS 89

FIG. 5. The dependence of the spectral radiusρλ(τ ) on the relaxation parameterτ for selected values ofε0

for the square lattice. The dots are obtained from Eq. (35).

From (35) we can determineτmin, the minimum relaxation parameterτ for which the
spectral radiusρλ = 1 and hence, from (32) the maximum Reynolds number achievable in
these TLBE models for a particular grid size nα = N and macroscopic velocity u. These
maximal Reynolds numbers for the hexagonal (RH) and square (RR) are shown in Fig. 6
for u = 0.1. In the range where (35) is invalid, RR was determined fromτmin obtained
directly using the method of powers. It is clear that the hexagonal lattice provides much
better numerical stability at high Reynolds numbers than the square lattice for the two TLBE
models examined here.

FIG. 6. The maximum achievable Reynolds number for the 13-bit 2D hexagonal (full line) and square (dash-
dot) TLBE lattice models [11, 13]. The lattice size nα = N. The dashed line indicates the region where Eq. (35)
starts to fail for the square (i.e., rectangular) grid. The hexagonal lattice provides much better numerical stability
at high Reynolds numbers than the square lattice.
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It is possible that the maximal Reynolds number achievable due to the onset of grid in-
stabilities may be somewhat lower due to nonlinear effects. In particular, the energy density
ε is not a constant in the full TLBE simulation and its variations must be kept within the
stability limits. The allowed stability window forε will be reduced as one increases the value
of the macroscopic velocity u. However, lowering u lowers the Reynolds number, (32).

From our analysis of other TLBE models, it seems that the numerical stability gets worse
as the number of speeds in the model are increased. This was seen in the stability patterns
of a 2-speed 17-bit octagonal lattice compared to the 3-speed 13-bit square lattice. These
results will be published elsewhere.

For the quasi-incompressible LBE models, which achieve closure at the momentum
level, one can formally apply the same linearization procedure as outlined in Section 2.
The coefficients A and B in Eq. (5) now become constants and the term containing the
derivative A′

p vanishes;ε, in the definition of the coefficients A and B, can be retained as
a free numerical parameter (with no physical meaning since there is no energy equation in
LBE models). With these coefficient restrictions, we have considered a 13-bit square LBE
model similar to that discussed earlier and found that this LBE model is linearly stable
(spectral radiusρλ = 1) for τ = 0.5 throughout the entire region in which the equilibrium
distribution functions are positive (i.e., in the range 0.33 < ε < 0.67). This is consistent
with the result [19] that, under the assumption of positive equilibrium distribution, an H-
theorem can be proved for quasi-incompressible LBE.

5. CONCLUSIONS

We have considered the linear stability of TLBE using the method of powers and applied
our analysis to two 2-speed 13-bit TLBE models [11, 13]. With respect to the maximal
achievable Reynolds number, the numerical stability of TLBE model based on the square
lattice [13] was an order of magnitude worse than that for the hexagonal lattice [11].

For strong turbulence modeling, the current TLBE modeling [11–13] may have to be
revised. One promising alternative has been suggested by Heet al.[20] in which the spatial
and (microscopic) velocity grids are decoupled. This allows not only for nonuniform spatial
grid but a technique to increase the Reynolds number through interpolation techniques.
Some care must be taken to ensure that the interpolation techniques that reconnect the
spatial and velocity grids does not introduce additional viscosity and, hence, a reduced
Reynolds number. Additional viscosity and reduced Reynolds number has been seen when
we attempted to suppress the grid instabilities by either smoothing the distributions or
upgrading the time derivative in TLBE to second-order accuracy.

These TLBE models [11, 13] which utilize the single relaxation time scalar BGK collision
operator, have an invariant value for the Prandtl number(Pr = µ/κ). To simulate flows
with a variable Prandtl number, one can generalize to a matrix collision operator whose
eigenvalue properties allow a trivial matrix inversion as for the BGK scalar operator [21].
We have performed TLBE simulations and seen the effects of a variable Prandtl number on
the evolution of density, temperature, and vorticity contours, as well as numerical stability
analysis. This will be reported elsewhere [22].
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